

School of Mathematics & Natural Sciences

Berry College Rome, Georgia

A Case Study:

Sustainable Design to Support Real World Undergraduate Education in the Natural Sciences

A presentation for:

INTRODUCTION

Presentation Outline:

- Overview of Berry College
- The Facility:
 Berry's School of Mathematics & Natural Sciences
- Sustainable Design Strategies
- Energy Savings
- Questions & Answers

OVERVIEW OF BERRY COLLEGE

Institutional Mission:

Berry College serves humanity by inspiring and educating students. Berry emphasizes a comprehensive educational program committed to high academic standards and practical work experience in a distinctive environment of natural beauty.

OVERVIEW OF BERRY COLLEGE

Campus Setting:

Berry offers an unusually beautiful environment for learning with 28,000 acres of land. Fields, forests, lakes, and mountains provide scenic beauty in a protected natural setting.

OVERVIEW OF BERRY COLLEGE

of Berry College

Brief History:

- Founded in 1902 by Martha Berry (1866-1942)
- A girls' school was added in 1909
- Establishment of a junior college in 1926
- Became a four-year college in 1930
- Added graduate programs in 1972

Campbell School of Business

The Charter School of Education & Human Sciences

Evans School of Humanities & Social Sciences

School of Mathematics & Natural Sciences

Now a comprehensive college offering undergraduate and graduate programs, became one of the nation's most successful educational experiments combining academic study and student work and is a model for many institutions in the United States and abroad.

THE FACILITY

19 Lecture Classrooms

18 Classroom Labs

Biology, Chemistry, Computer Science, Earth Sciences, Physics and Astronomy

Core Research Facilities

Discipline-Specific Research Labs

Administrative & Faculty Offices

Support Spaces

THE FACILITY

Planning | Architecture | Interiors Engineering | Construction

Multi-Disciplinary Thinking:

- Biology; Chemistry; Physics; Environmental / Earth Science; Mathematics; Computer Science; General Classrooms
- Interactive Spaces
- Problem Seeking / Problem Solving Team Environment

Team / Independent Research:

- Support / Required
- Real World Experience for Under Graduates
- Application of Fundamentals
- Problem Seeking / Problem Solving Process

Opportunities for Real World research experience:

- Involvement in faculty research projects
- Practical experience in the lab
- Experience with all aspects of research including grant writing
- Building serves as a teaching tool

SUSTAINABLE DESIGN STRATEGIES

Save existing trees by distributing required parking zones Re-use removed trees in new landscaped areas

- Designed life-span of systems & materials: 50 years
- "Green" Interior Finishes

Low VOC

Recycled content

- Water Conservation
 Water-less Urinals
 Potable water from on-site source
- Use of Day-lighting
- Energy-Efficient Lighting Systems

 Motion/Occupancy Sensors
- Recycle Construction Waste
 Re-useable formwork

Energy Recover System

- Enthalpy Recovery Wheels in 100% Outside Air AHU

ENERGY SAVINGS

Zone	Without Energy Recovery		With Energy Recovery		Total Savings \$ / year
	Cooling	Heating	Cooling	Heating	
AHU-1	143 tons	64 BHP	73 tons	19 BHP	\$ 8,600
AHU-2	143 tons	64 BHP	73 tons	19 BHP	\$ 8,600
AHU-3*					
AHU-4	69 tons	31 BHP	35 tons	9 BHP	\$ 4,250
AHU-5	69 tons	31 BHP	35 tons	9 BHP	\$ 4,250
AHU-6*					
AHU-7*					
AHU-8	23 tons	11 BHP	12 tons	4 BHP	\$ 1,700

^{*} Indicates zones that have low outside air requirements

Total Savings 219 Tons 141 BHP \$27,400 / year

Net Cost Increase: \$135,000

Payback: 4.9 years

Questions / Discussion

Planning | Architecture | Interiors Engineering | Construction

